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Abstract. For solving large systems of nonlinear equations by quasi-Newton methods 
it may often be preferable to store an approximation to the Jacobian rather than an 
approximation to the inverse Jacobian. The main reason is that when the Jacobian is 
sparse and the locations of the zeroes are known, the updating procedure can be made 
more efficient for the approximate Jacobian than for the approximate inverse Jacobian. 

I. Introduction. In recent years a class of methods termed quasi-Newton have 
received considerable attention in the literature [1]-[3]. In one such method [1], 
[4] iterative approximations to the solution of the system of equations 

(1) f(x) = 0 

where f and x are n-vectors, are obtained by solving 

(2) G(k) p(k) = 
(k) 

and substituting p(k) in 

(3) X (k+l) = X(k) + t(k) (k) 

The scalar t(k) is chosen to reduce some norm off at each step, thus ensuring stabil- 
ity. The approximation G(k) to the Jacobian is revised after each step in accordance 
with 

(4) G(k+l) = G(k) + [f(l) - (1 - t(k))f(k)]P(k)T 
t(k)M ()TP (k) 

This is the result of a primary condition requiring G (k+I) to predict the same changes 
in f in the direction p (k) that actually occurred at the (k + 1)th step (supplies n 
equations) and a secondary condition requiring G(k+l) to predict the same changes 
in f as G(k) in all directions orthogonal to p(k) (supplies the remaining n2 - n equa- 
tions). 

Broyden [1] described a class of methods containing the above method as a 
special case. However, he suggested the use of an approximation H(k) to the in- 
verse Jacobian instead of G(k). He supplied an explicit updating algorithm for 
H (k) equivalent (in its simplest form) to (4). Other choices of the secondary con- 
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dition on G(k) or H(k) are possible and this fact gives rise to the class of quasi- 
Newton methods. 

When H(k) is used, the solution of the linear equations (2) is reduced to the 
matrix-vector multiplication 

(5) (k) = (k)f (k) 

This is certainly an advantage when all elements of the Jacobian are unknown. 
However, in many large systems of nonlinear equations, particularly the difference 
equations arising from nonlinear differential equations, most of the elements of the 
Jacobian are known to be zero and other elements may be known nonzero con- 
stants. If the known zeros are introduced into G(k), much less storage is required 
for G(k) than for the full matrix H(k). Also, if G(k) has a band structure, (2) need not 
be a great deal more time-consuming than (5). Moreover, when many of the ele- 
ments of the Jacobian are known, the number of secondary conditions on G(k+l) 

can be greatly reduced, so that G converges more rapidly to the Jacobian. This 
requires a simple modification of (4) which will now be described. 

II. Modification When the Jacobian is Sparse. The ith row g,(k) of G(k) represents 
an approximation to the gradient of the ith function component fi. When n -r 

components of gi are known constants, one first imposes the condition that these 
components shall remain unchanged in the Jacobian revision; the remaining choices 
have to be made on the basis of the remaining ri coordinate directions. 

Designate by p(k) the column vector derived from p(k) by setting pj(k) to zero 
whenever the corresponding element of gi is a known constant. Note that p(k) is 

dependent on i. Also let 9i be the row vector derived from gi by setting its unknown 
elements to zero. 

The known components of gi account for a change t(k)Utp(k) infi at the (k + 1)st 
step. The remainder of the change, f,(k+l) - f,(k) - t(k)p(k), must then be at- 
tributed to the unknown components. Thus the primary condition on gi(k+1) 

restricted to ri-space, becomes 

(6) t(k)g (k+1)p(k) = f (k+l) _ f.. (k) _ t(k)gi p(k) i = 1,2, , n . 

This is, in fact, identical to the usual primary condition t(k)G(k+1)p(k) = f (k+1) - f (k) 

because g,(k+l)p (k) + gip (k) = gi (k+l)p (k). The secondary condition is similarly 
obtained by restricting the usual secondary condition to the ri-space corresponding 
to the unknown elements of gi: 

(7) g i q 9i , i 11 2, ** n 

where q satisfies p (k)q = 0. This does not reduce to the usual condition G(k+l)q = 

G(k)q. 

It is easily verified that (6) and (7) are satisfied by the exact row-by-row ana- 
logue of (4), i.e., 

(8) i = ? [fic~(k+l) _ _ (k))fi(k)]p(k)T 
(8) 9i~l = +f i 41 tI)tki]Pl = 1 21..k)( nk k 



MODIFICATION OF A QUASI-NEWTON METHOD 29 

III. Example. A set of equations used by Broyden to test his methods is 

fi = - (3 + axl)xl + 2x2- 

(9) fi = Xi-l - (3 + eXi)Xi + 2xj+j1-A i = 2, 3, *n- 

f. = x.-1 - (3 + ax.)x. - j3. 

These equations are also suitable for illustrating the present variant, if the zero 
entries in the Jacobian are regarded as known. The parameter values chosen were 
a = -.5; 3 = 1; n = 5, 10, 20; xi(?) = -1 for all i. Both the unit matrix and a 
difference approximation based on a differencing interval of .001 were used for 
GO). Broyden's mean convergence rate 

(10) R =-lIn N 

where N1 and Nm are the initial and final Euclidean norms of f, was computed in 
each case. m has been redefined as the total number of function component evalua- 
tions divided by n. In this way m reflects the fact that one can take advantage of 
the Jacobian's sparseness in computing GO0) by differencing. 

Results for the present method ("modified Jacobian revision"), Broyden's 
1/fsr method ("basic Jacobian revision"), and the constant matrix method ("no 
Jacobian revision") are shown in Tables I - III. 

TABLE I. n = 5 

Nature of G(0) Method N1 Nm m R 

Difference Mod. Jac. rev. 1.803 9.592 X 10-7 8 1.901 
Approximation Basic Jac. rev. 1.803 9.657 X 10-8 9 1.947 
to Jacobian No Jac. rev. 1.803 2.149 X 10-7 11 1.504 

Mod. Jac. rev. 1.803 3.272 X 10-7 20 0.776 
Unit Basic Jac. rev. 1.803 7.262 X 10-7 23 0.640 
Matrix No Jac. rev. 1.803 5.920 X 10-7 73 0.205 

TABLE II. n = 10 

Nature of G(0) Method N1 Nm m R 

Difference Mod. Jac. rev. 2.121 1.408 X 10-7 9 1.878 
Approximation Basic Jac. rev. 2.121 2.098 X 10-7 11 1.493 
to Jacobian No Jac. rev. 2.121 5.404 X 10-7 15 1.026 

Mod. Jac. rev. 2.121 1.707 X 10-7 26 0.628 
Unit Basic Jac. rev. 2.121 4.391 X 10-7 61 0.252 
Matrix No Jac. rev. 2.121 8.363 X 10-7 88 0.168 

The results indicate that modified Jacobian revision becomes increasingly desirable 
as n is increased, particularly if the initial approximation to the Jacobian is poor. 

The modification may also be useful when the Jacobian is full, but most of the 
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TABLE III. n = 20 

Nature of G(O) Method N1 Nm m R 

Difference Mod. Jac. rev. 2.646 3.130 X 10-7 9 1.792 
Approximation Basic Jac. rev. 2.646 3.846 X 10-7 12 1.323 
to Jacobian No Jac. rev. 2.646 3.473 X 10-7 19 0.838 

Mod. Jac. rev. 2.646 3.402 X 10-7 25 0.635 
Unit Basic Jac. rev. 2.646 9.850 X 10-7 118 0.125 
Matrix No Jac. rev. 2.646 9.222 X 10-7 97 0.153 

entries are easily computed constants. In this case, however, storage space is not 
economized and the solution of (2) may be time-consuming. 
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